

Weaving Ada 95 into the .Net Environment

Martin C. Carlisle, Ricky E. Sward, and Jeffrey W. Humphries
Department of Computer Science
United States Air Force Academy

{Martin.Carlisle, Ricky.Sward, Jeffrey.Humphries}@usafa.edu

ABSTRACT
This paper explains our efforts to add Ada to Microsoft’s family of
.NET languages. There are several advantages to weaving Ada
into the Common Language Environment provided by the .NET
environment. This paper explains our approach and current
progress on the research. We provide the means to extract Ada
specification files from Microsoft Intermediate Language (MSIL)
code and compile Ada programs into MSIL.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language
Classifications – Ada, Object-oriented languages.
D.3.4 [Programming Languages]: Processors – compilers,
interpreters, run-time environments

General Terms: Algorithms, Design, Standardization,
Languages.

Keywords: Microsoft .Net environment, Common Language
Runtime, Ada 95, Just-in-Time compiling.

1. INTRODUCTION
Microsoft’s .NET environment provides a large set of object-
oriented libraries for application development, targeted especially
for web-based applications. [11,12] It is an entirely new
framework for programming Windows (and possibly other)
machines. One of the key goals of .NET was to provide language
interoperability. Ada shares similar goals, and was the first
language to include mixed-language pragmas as part of its
specification. Our A# project seeks to create a fully-interoperable
environment for an Ada programmer to use .NET. Ada
programmers will be able to use libraries written by other .NET
programmers even if the libraries are written in other languages.
Ada programmers will also be able to share their libraries with
programmers using other languages.

2. MICROSOFT’S COMMON LANGUAGE
RUNTIME
In building the .NET Environment, Microsoft has found a way to
provide language independent development coupled with platform
independent execution. Their Common Language Environment
(CLR) provides developers with a choice of several different
programming languages such as C++, C#, Jscript, Visual Basic,
and Perl. [10,11] The only requirement is that these languages
must fit properly into the .NET environment. Each language must
be compiled into the Microsoft Intermediate Language (MSIL) in
order to run on separate platforms. The MSIL is then compiled
using the Just-In-Time compiler specific to each runtime platform.
[10]

The advantages of using the .NET environment include language
independence and platform independence. The .NET environment
also introduces garbage collection and support for versioning.
Because of the language independence, any language that supports
the CLR can support the same set of features. [10,11] The .NET
environment also supports code-level access security where you
can specify the level of security for code running on a .NET
platform. [10] These advantages make the .NET platform an
appealing target for Ada applications.

3. ADDING ADA TO THE .NET FAMILY

3.1 Overall Approach
To begin prototype work we used JGNAT and JBIMP to convert
from Ada to MSIL (see Figure 1). The JGNAT tool developed by
Ada Core Technologies compiles Ada into Java Byte Code. [4,8]
The JBIMP tool developed by Microsoft as part of the J#
implementation compiles Java Byte Code into MSIL. [9] By
using JGNAT to convert Ada to Java Byte Code and then using
JBIMP to convert the Java Byte Code to MSIL, we developed a
proof-of-concept prototype for the A# compiler.

In order for A# to tap into the rich resource of the .NET libraries,
we needed to build Ada specification files for each library file.
Our approach to this problem was to reverse engineer the MSIL
code and recover the signatures of the functions and then build
them into Ada specification files.

While doing the reverse engineering, we discovered that certain
features of MSIL were not representable using the syntax provided
by JGNAT. We therefore decided to rewrite JGNAT (into a tool
we call “MGNAT”) so that it outputs MSIL code directly, rather
than going through the intermediate step of Java Byte Code.

To demonstrate the utility of the tools, we have ported RAPID, a
GUI design tool to the .NET framework. [3]

This paper presents research being done at the Air Force Academy on the
A# project. We will discuss our approach for compiling Ada into MSIL,
extracting Ada specifications from MSIL, and our progress to date.

Copyright 2002 Association for Computing Machinery. ACM acknow-
ledges that this contribution was authored or co-authored by a contractor
or affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
SIGAda’02, December 8–12, 2002, Houston, Texas, USA.
Copyright 2002 ACM 1-58113-611-0/02/0012…$5.00.

22

3.2 Initial Prototype Work
In order to develop an initial proof-of-concept prototype, we used
the JGNAT and JBIMP compilers to convert Ada to MSIL. [4,8,9]

Ada Code

Java Byte Code

Microsoft Intermediate Language

JGNAT

JBIMP

Figure 1 – Ada to Java Byte Code to MSIL

As shown in Figure 1, JGNAT converts the Ada code into a Java
Byte Code .class file. This .class file is then converted to an MSIL
file by JBIMP.

Using this process, we successfully converted an Ada “Hello
World” program into MSIL. Initially, there was a problem with
the conversion of Ada.Text_IO from Java Byte Code to MSIL.
This error was a result of a bug in the implementation of JBIMP.
A slight modification of the MSIL code solved the problem.

3.3 Recovering Ada Specifications from MSIL
One of the benefits of merging Ada into the .NET environment is
the rich set of functions, web objects, and utilities available in the
.NET environment libraries. In order to access these objects from
Ada programs, we need a specification file for each MSIL library.
Our approach in this case is to re-engineer each of the MSIL
libraries and automatically generate an Ada specification for the
library file. Ada programs can then make calls to the functions in
the library specification file and the calls will be resolved when the
MSIL code is compiled by the Just-In-Time compiler on the
runtime platform.

The tool we have developed, msil2ada, takes in the MSIL as a text
file and outputs Ada specification files. The MSIL text files can
be generated from .NET dynamic link libraries (DLLs) using the
ILDASM tool provided by Microsoft.

The first step in re-engineering MSIL code was to develop a
grammar for MSIL. Given a grammar for MSIL, the AdaGOOP
tool automatically generates a lexer, a parser, and the code for
generating the MSIL decorated parse tree. [1]

While building the grammar for MSIL and using AdaGOOP to
generate the parse tree, we modified AdaGOOP to also
automatically generate tree traversal code. [2] Now, along with
producing the lexer, parser, and parse tree for a given grammar,
AdaGOOP also generates code to walk the parse tree. The

developer specifies what action is to be done when walking the
parses tree, but the changes required to specify this action are
minimal. This generated code uses the Visitor pattern as a
template. [6, 2] By using AdaGOOP, we were able to save large
amounts of coding time; AdaGOOP automatically generated over
15,000 non-blank, non-comment lines of package bodies.
After building the grammar for MSIL and generating the parse
tree, we used the generated tree traversal code to walk the tree and
print out MSIL code. The effect was to parse in MSIL code, walk
the parse tree and generate MSIL code. This validated the parser
and ensured we had implemented the MSIL grammar properly.
After this check, we used the tree traversal code to re-engineer the
Ada specification file from the MSIL parse tree.

Ada
Specification

Walk with code
to build parse tree

Hand-built code
to generate Ada
specification

Figure 2 – MSIL parse tree to Ada specification

Figure 2 shows this process in greater detail. The parse tree shown
on the left in Figure 2 represents a parse tree built from parsing an
MSIL library file. The parse tree shown at the top of Figure 2
represents a subset of the MSIL parse tree, which includes only the
signatures of namespaces, classes, methods, and fields. The
implementation code from the library is not needed to generate the
Ada specification file. Culling out this parse tree reduces the time
required for operations on the parse tree and significantly reduced
compilation time while developing the actions for the culled tree.
(On our development machine, compiling the action file for the
full tree required 110 seconds, compared to 4 for the action file for
the culled tree). The tree traversal code generated by AdaGOOP is
used to walk the tree and generate the minimized parse tree. Once
this tree has been built, hand-built code is used to walk the
minimized parse tree and generate the Ada specification file
(shown at the bottom right in Figure 2).

We have tested this re-engineering of MSIL code on a C# DLL
file named TimeLibrary.dll. This file is an example from Deitel &
Deitel, C# How to Program. [5] We have successfully converted
TimeLibrary.dll into an Ada specification file. Figure 3 shows an
excerpt from the TimeLibrary.cs C# file and Figure 4 shows the
corresponding Ada specification file.

23

// TimeLibrary.cs
// Placing class Time3 in an assembly for reuse.
using System;
namespace TimeLibrary
{
 // Time3 class definition
 public class Time3 : Object
 {
 private int hour; // 0-23
 private int minute; // 0-59
 private int second; // 0-59
 // Time3 constructor: hour and minute supplied,
second
 public Time3(int hour, int minute)
 {
 SetTime(hour, minute, 0);
 }
 // property Hour
 public int Hour
 {
 get
 {
 return hour;
 }
 set
 {
 hour = ((value >= 0 && value < 24)
? value : 0);
 }
 } // end property Hour
…

Figure 3 – TimeLibrary.cs

pragma Extensions_Allowed(On);
with MSSyst.Object;
with MSIL_Types;
use MSIL_Types;
with type TimeLibrary.Time3.Ref is access;
with type MSSyst.String.Ref is access;
package TimeLibrary.Time3 is
 type Typ;
 type Ref is access all Typ'Class;
 type Arr1 is array(Natural range <>) of Ref;
 type Ref_Array is access all Arr1;
 type Typ is new MSSyst.Object.Typ with record
 null;
 end record;
…
 function new_Time3(
 This : Ref := null;
 hour : Integer;
 minute : Integer) return Ref;
 function get_Hour(This:access Typ)return Integer;
 procedure set_Hour(
 This : access Typ;
 value : Integer);
…

Figure 4 – Ada specification for TimeLibrary

Using the TimeLibrary Ada specification file, we built an Ada
main program with calls to functions in the library file.

We then used msil2ada to translate the following standard .NET
DLLs: system.dll, system. windows.forms.dll, system.drawing.dll,
mscorlib.dll. These DLLs contain all of the necessary classes for
doing basic user-interface design (including dialogs and windows
with menus, buttons, text boxes and other standard components).

For simplicity, we adopted many of the same conventions used by
jvm2ada (the tool that translates Java class files into Ada
specifications). In particular, we used the same techniques for
handling interfaces, circular type dependency, and constructors.

However, we developed our own techniques for handling
ValueType and Enumeration, which were not present in Java.

3.3.1 Interfaces
The designers of JGNAT chose to handle Java interfaces by
specifying a type which implements interfaces as parameters of the
type, as shown in Figure 5.

 type Typ(
 I_IContainerControl :
 IContainerControl.Ref;
 I_ISynchronizeInvoke :
 ISynchronizeInvoke.Ref)
 is new ContainerControl.Typ(
 I_IContainerControl =>
 I_IContainerControl) with record
 null;
 end record;

Figure 5 – Ada specification for class with interfaces

The class in Figure 5 implements two interfaces,
IContainerControl and ISynchronizeInvoke. Since the parent class
also implements IContainerControl, this appears again after the
name of the parent type.

When building msil2ada, we had to deal with .Net interfaces,
which are similar to Java interfaces. We chose to handle them in
the same fashion as JGNAT and build types which implement the
interfaces as parameters of the type. To do this, msil2ada
automatically discovers all of the interfaces in the parent classes (if
the parent class is present in the input) and generates the
appropriate references. Unfortunately, there are instances in the
MS DLLs where a class has its parent in another DLL and
msil2ada fails to generate the necessary interface references,
yielding a compilation error on the specification. We have
instrumented msil2ada to recognize the most troublesome
examples of this (the Control class in System.Windows.Forms.dll)
and output the correct code for this case.

3.3.2 Circular Type Dependency
In Ada 95, types that are mutually dependent must be declared in
the same package. Mutually dependent types abound in the .NET
and JVM libraries, so this approach is impractical. As was done in
JGNAT, we implement the “with type” context clause in A# to
handle such mutual dependencies. Figure 4 shows an example of
the “with type” clause.

3.3.3 Constructors
As in JGNAT, constructors are marked with a special pragma,
MSIL_Constructor. They take a single parameter, which defaults
to null. Normally, to create an object of the class, you just call the
constructor with no parameters. If you want to create your own
constructor for a type that is a descendant of a .NET type, then the
syntax becomes somewhat counterintuitive. Figure 6 shows that
the first step is to call the parent constructor with “This” as a
parameter (even though it appears that “This” has never been
given a value, the allocation is added implicitly by the compiler).
Then, “This” is returned. Between the “begin” and “end”
additional initialization required for the child class may be
performed.

24

function New_MenuItem(This : Ref := null)
 return Ref is
 Super : MenuItem.Ref :=
 MenuItem.New_MenuItem(
 MenuItem.Ref(This));
 begin
 return This;
 end New_MenuItem;

Figure 6 – Constructor for child of .NET class

3.3.4 ValueType
The Java Virtual Machine, includes only base types (such as
integer and float) and class references. The MS .NET platform
allows for the creation of types that are passed by value (hence the
name ValueType) instead of by reference. To resolve this, we
have added the reserved word “ValueType”. We use this type
name instead of “Typ” and “Ref” as shown in Figure 4. For
example, a class reference to the Time3 class is named
TimeLibrary.Time3.Ref, but a Point (from System.Drawing.dll) is
named MSSyst.Drawing.Point.ValueType. If a type is so named,
then the compiler will generate code for it in accordance with the
MSIL calling conventions for ValueTypes. Additionally, there is
no pointer for this type, so the modified context clause to handle
mutual dependencies ends with “is tagged” instead of “is access”.

3.3.5 Enumeration
The .NET Framework provides enumeration types, which are
child classes of Enum (which is a child of ValueType). We
initially mapped these to Ada enumeration types. However, unlike
Ada enumeration types, .NET enumerations can have multiple
names corresponding to the same value, and, in certain cases, can
be combined to create values that have no name. For example, in
the FontStyle enumeration, Bold and Italic are listed separately,
but they can also be added together to create a Bold Italic style,
although this is not listed in the enumeration. On closer
observation, these appear to correspond more directly to named
constants. For now, we provide a function “+” for performing
such combinations. Currently, all of the attributes of Ada
enumerations (‘Pos, ‘Succ, etc.) do not work correctly on these
types. In a future version, we may implement these as named
constants.

3.4 Compiling Ada Directly to MSIL
In order to compile Ada directly into the Microsoft Intermediate
Language (MSIL), we have re-written the JGNAT compiler into a
tool we call MGNAT. MGNAT compiles a modified Ada syntax
and outputs MSIL directly. We refer to the modified Ada syntax
as the A# language. Many of the compiler design issues were
already addressed in our discussion of msil2ada, but there were a
couple of issues that were unique to the compiler.

One design goal was to make programming .NET from Ada as
transparent as possible. We made two language changes in A# in
order to simplify using the compiler: allowing object.method
syntax for method calls, and making conversions from Ada strings
to .NET strings implicit.

3.4.1 Object.Method syntax
Ada 95 has often been criticized for making the syntax of
dispatching method calls the same as the imperative procedure
calls. Consider the following example from C#:

 Window1.ResetSecurityTip(

 true);

The same call in Ada 95 would appear as:

 MSSyst.Windows.Forms.ResetSecurityTip(

 This => Window1,
 modalOnly => True);

This can become quite tedious, as packages tend to be nested
deeply. One alternative is to add use clauses for all of the
packages. Still, if the user is trying to follow the examples in the
help files, they need to constantly convert to the Ada syntax. We
have modified the compiler to allow the same object.method
syntax:

Window1.ResetSecurityTip(
 modalOnly => True);

We have also performed this modification to the Windows 3.15
version of GNAT. It required only 127 non-blank, non-comment
lines of Ada code. We expect this syntax will make it easier for
students to understand object-oriented programming. Since we
also support the standard Ada 95 syntax, we still have the nicer
Ada syntax for operators (x+y instead of x.”+”(y)).

3.4.2 Implicit string conversions
Both the JVM and .NET provide string classes. In JGNAT, Ada
strings were incompatible with these classes and a conversion
operator, “+”, was provided. This leads to code as the following:

Console.Writeline(+”Hello world”);

While this is consistent with Ada’s strong typing, we felt that it
made the coding seem awkward. Hence, if the user has a use
clause on MSSyst.String, the compiler will automatically insert the
conversion operator. A conversion operator is also provided to go
from .NET strings to Ada strings; however, it is not implicitly
added. An example of its use is below.

 declare
 Y : String := +Console.ReadLine;
 begin

3.5 Porting RAPID to .NET
In order to test our implementation of MGNAT, we ported RAPID
[3] to the new A# language. Although in general we found the
.NET port to be easier and require less code than the JVM port,
there were three features which .NET would not support without
considerable effort. RAPID has been ported to Tcl/Tk, Gtk, JVM
and .NET. .NET was the only platform that didn’t fully support
the RAPID library.

First, .NET doesn’t contain a routine for making a bell sound. A
newsgroup respondent to a question on this suggested using the
DirectSound interface (which would have required a separate
download and install).

Second, .NET radio buttons can not be distinguished into groups
without placing each group in a GroupBox. (On other platforms,
the user can specify what radio buttons should go together without
adding another GUI element).

25

The most frustrating limitation was that menus could only be
attached to a form. (In the other versions of RAPID, a
WYSIWYG menu is displayed for the form being designed).

5. FUTURE WORK
At this point, there are many opportunities for improvement of the
MGNAT compiler and msil2ada. First, there are several .NET
types that are not currently representable. Msil2ada does not
currently address marshalling objects for the COM interface, and
the resulting code fails to compile for functions that return
unconstrained arrays.

Second, .NET enumerations need to be readdressed. Although
currently we map these to Ada enumerations, the Ada enumeration
attributes aren’t working. A possible solution is to switch these to
named constants, which will require modification of both msil2ada
and the compiler.

Finally, the Ada libraries have not yet been compiled with this
compiler. We currently have translated jgnat.jar (the Java
compressed class files) into jgnat.dll using the Microsoft
conversion tool JBIMP. This introduces an unnecessary
dependence on the Visual J# libraries. Compiling with the new
compiler will require translating all of the JVM library calls to
.NET calls.

5. CONCLUSION
The advantages of the .NET environment with its language
interoperability and platform independence make it an attractive
target for Ada developers. We have built a compiler for an Ada
language for .NET, which we call A# that translates directly into
the Microsoft Intermediate Language. To demonstrate the utility
of the tool, we have used it to compile RAPID, a GUI design tool.
While there remains significant room for improvement, this tool
will be useful for a large class of Ada applications, and will allow
Ada developers access to the .NET Framework.

6. REFERENCES
[1] Carlisle, Martin C., An Automatic Object-Oriented Parser
Generator for Ada, Ada Letters, Volume XX, Number 2, June
2000, pp. 57-63.

[2] Carlisle, Martin and Ricky Sward, An Automatic “Visitor”
Generator for Ada, Ada Letters, Volume XXII, Number 3,
September 2002, pp. 42-47.

[3] Carlisle, Martin and Pat Maes, RAPID: A Free Portable GUI
Designer for Ada, Proceedings of SIGAda ‘98, ACM, 1998.

[4] Comar, Cyrille, Gary Dismukes, and Franco Gasperoni,
Targeting GNAT to the Java Virtual Machine, Proceedings of the
Tri-Ada 97 Conference, St Louis MO, Nov 9 – 13, 1997.

[5] Deitel, H. M., P. J. Deitel, J. Listfield, T. R. Nieto, C. Yaeger,
and M. Zlatkina, C# How to Program, 2002, Prentice Hall, Upper
Saddle River, NJ 07458

[6] Gamma, Erich, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software, 1995, Addison-Wesley, Reading, MA, pgs 331-344.

[7] Gasperoni, F. and G. Dismukes, Multilanguage Programming
on the JVM: The Ada 95 Benefits, Ada Letters, Volume XX,
Number 4, December 2000.

[8] Gosling, J., B. Joy, and G. Steele. The Java Language
Specification, Addison-Wesley, 1996.

[9] Jepson, Brian, A Visual J# .NET Primer,
http://www.oreillynet.com/pub/a/dotnet/2001/10/15/jsharp.html

[10] Platt, David S. Introducing Microsoft .NET, 2001, Microsoft
Press, Redmond, WA 98052-6399.

[11] The .NET Runtime Environment. See
http://www.microsoft.com/net/.

[12] Weiss, Aaron, Microsoft’s .NET: Platform in the Clouds,
ACM White Paper, Dec 2001.

26

	3.3.1 Interfaces
	3.3.2 Circular Type Dependency
	3.3.3 Constructors
	3.3.4 ValueType
	3.3.5 Enumeration
	3.4.1 Object.Method syntax
	3.4.2 Implicit string conversions

